
CHAPTER 31

Network Security

In Chapter 30, we introduced the science of cryptography. Cryptography has several
applications in network security. In this chapter, we first introduce the security services
we typically expect in a network. We then show how these services can be provided
using cryptography. At the end of the chapter, we also touch on the issue of distributing
symmetric and asymmetric keys. The chapter provides the background necessary for
Chapter 32, where we discuss security in the Internet.

31.1 SECURITY SERVICES
Network security can provide one of the five services as shown in Figure 31.1. Four of
these services are related to the message exchanged using the network: message confi­
dentiality, integrity, authentication, and nonrepudiation. The fifth service provides
entity authentication or identification.

Figure 31.1 Security services related to the message or entity

Message

Security
services

Entity

Confidentiality

Integrity

Authentication

Nonrepudiatton

Authentication

961

962 CHAPTER 31 NETWORK SECURiTY

Message Confidentiality
Message confidentiality or privacy means that the sender and the receiver expect con­
fidentiality. The transmitted message must make sense to only the intended receiver. To
all others, the message must be garbage. When a customer communicates with her
bank, she expects that the communication is totally confidential.

Message Integrity
Message integrity means that the data must arrive at the receiver exactly as they were
sent. There must be no changes during the transmission, neither accidentally nor mali­
ciously. As more and more monetary exchanges occur over the Internet, integrity is crucial.
For example, it would be disastrous if a request for transferring $100 changed to a
request for $10,000 or $100,000. The integrity of the message must be preserved in a
secure communication.

Message Authentication
Message authentication is a service beyond message integrity. In message authentication
the receiver needs to be sure of the sender's identity and that an imposter has not sent the
message.

Message Nonrepudiation
Message nonrepudiation means that a sender must not be able to deny sending a message
that he or she, in fact, did send. The burden of proof falls on the receiver. For example,
when a customer sends a message to transfer money from one account to another, the
bank must have proof that the customer actually requested this transaction.

Entity Authentication
In entity authentication (or user identification) the entity or user is verified prior to
access to the system resources (files, for example). For example, a student who needs to
access her university resources needs to be authenticated during the logging process.
This is to protect the interests of the university and the student.

31.2 MESSAGE CONFIDENTIALITY
The concept of how to achieve message confidentiality or privacy has not changed for
thousands of years. The message must be encrypted at the sender site and decrypted
at the receiver site. That is, the message must be rendered unintelligible to unauthorized
parties. A good privacy technique guarantees to some extent that a potential intruder
(eavesdropper) cannot understand the contents of the message. As we discussed in
Chapter 30, this can be done using either symmetric-key cryptography or asymmetric­
key cryptography. We review both.

SECTION 31.2 MESSAGE CONFIDENTIALITY 963

Confidentiality with Symmetric-Key Cryptography

Although modern symmetric-key algorithms are more complex than the ones used
through the long history of the secret writing, the principle is the same. To provide confi­
dentiality with symmetric-key cryptography, a sender and a receiver need to share a
secret key. In the past when data exchange was between two specific persons (for exam­
ple, two friends or a ruler and her army chief), it was possible to personally exchange the
secret keys. Today's communication does not often provide this opportunity. A person
residing in the United States cannot meet and exchange a secret key with a person living
in China. Furthermore, the communication is between millions of people, not just a few.

To be able to use symmetric-key cryptography, we need to find a solution to the
key sharing. This can be done using a session key. A session key is one that is used only
for the duration of one session. The session key itself is exchanged using asymmetric­
key cryptography as we will see later. Figure 31.2 shows the use of a session symmetric
key for sending confidential messages from Alice to Bob and vice versa. Note that the
nature of the symmetric key allows the communication to be carried on in both direc­
tions although it is not recommended today. Using two different keys is more secure,
because if one key is compromised, the communication is still confidential in the other
direction.

Figure 31.2 Message confidentiality using symmetric keys in two directions

Alice GI Shared keys n
mr-----------------------------lI Bob

Plaintext ,----------, Ciphertext ,...-------, Plaintext
1-------------1

Data flow

a. A shared secret key can be used in Alice-Bob communication

Alice

Plaintext Ciphertext-----, Plaintext
I-----lDecry;pnonI---------'-------f

.. L.........."""::"::"--o....J

Data flow

b. A different shared secret key is recommended in Bob-Alice communication

Bob

The reason symmetric-key cryptography is still the dominant method for confiden­
tiality of the message is its efficiency. For a long message, symmetric-key cryptography
is much more efficient than asymmetric-key cryptography.

Confidentiality with Asymmetric-Key Cryptography

The problem we mentioned about key exchange in symmetric-key cryptography for
privacy culminated in the creation of asymmetric-key cryptography. Here, there is no
key sharing; there is a public announcement. Bob creates two keys: one private and one

964 CHAPTER 31 NETWORK SECURITY

public. He keeps the private key for decryption; he publicly announces the public key to
the world. The public key is used only for encryption; the private key is used only for
decryption. The public key locks the message; the private key unlocks it.

For a two-way communication between Alice and Bob, two pairs of keys are
needed. When Alice sends a message to Bob, she uses Bob's pair; when Bob sends a
message to Alice, he uses Alice's pair as shown in Figure 31.3.

Figure 31.3 Message confidentiality using asymmetric keys

Alice
r-,

----------------~~f f ~r ~ B~

Plaintext I . I Ciphertext r------, Plaintext
Encryption ----2-------1

• '-----_----J

Data flow

a. Bob's keys are used in Alice-Bob communication

~r-----------------
~ t t
~ ~ r

it
Data flow

b. Alice's keys are used in Bob·Alice communication

Bob

Confidentiality with asymmetric-key cryptosystem has its own problems. First, the
method is based on long mathematical calculations using long keys. This means that
this system is very inefficient for long messages; it should be applied only to short mes­
sages. Second, the sender of the message still needs to be certain about the public key
of the receiver. For example, in Alice-Bob communication, Alice needs to be sure that
Bob's public key is genuine; Eve may have announced her public key in the name of
Bob. A system of trust is needed, as we will see later in the chapter.

31.3 MESSAGE INTEGRITY
Encryption and decryption provide secrecy, or confidentiality, but not integrity. How­
ever, on occasion we may not even need secrecy, but instead must have integrity. For
example, Alice may write a will to distribute her estate upon her death. The will does
not need to be encrypted. After her death, anyone can examine the will. The integrity of
the will, however, needs to be preserved. Alice does not want the contents of the will to

SECTION 31.3 MESSAGE INTEGRITY 965

be changed. As another example, suppose Alice sends a message instructing her banker,
Bob, to pay Eve for consulting work. The message does not need to be hidden from Eve
because she already knows she is to be paid. However, the message does need to be safe
from any tampering, especially by Eve.

Document and Fingerprint

One way to preserve the integrity of a document is through the use of a fingerprint. If
Alice needs to be sure that the contents of her document will not be illegally changed,
she can put her fingerprint at the bottom of the document. Eve cannot modify the contents
of this document or create a false document because she cannot forge Alice's finger­
print. To ensure that the document has not been changed, Alice's fingerprint on the doc­
ument can be compared to Alice's fingerprint on file. If they are not the same, the
document is not from Alice.

To preserve the integrity of a document,
both the document and the fingerprint are needed.

Message and Message Digest

The electronic equivalent of the document and fingerprint pair is the message and mes­
sage digest pail: To preserve the integrity of a message, the message is passed through
an algorithm called a hash function. The hash function creates a compressed image of
the message that can be used as a fingerprint. Figure 31.4 shows the message, hash
function, and the message digest.

Figure 31.4 Message and message digest

Message

(Document)

Hash
function

Difference

The two pairs document/fingerprint and message/message digest are similar, with some
differences. The document and fingerprint are physically linked together; also, neither
needs to be kept secret. The message and message digest can be unlinked (or sent) sep­
arately and, most importantly, the message digest needs to be kept secret. The message
digest is either kept secret in a safe place or encrypted if we need to send it through a
communications channel.

The message digest needs to be kept secret.

966 CHAPTER 31 NETWORK SECURITY

Creating and Checking the Digest

The message digest is created at the sender site and is sent with the message to the
receiver. To check the integrity of a message, or document, the receiver creates the hash
function again and compares the new message digest with the one received. If both are
the same, the receiver is sure that the original message has not been changed. Of course,
we are assuming that the digest has been sent secretly. Figure 31.5 shows the idea.

Figure 31.5 Checking integrity

Alice

&

Hash Function Criteria

Message
and

digest

Bob

&

To be eligible for a hash, a function needs to meet three criteria: one-wayness, resis­
tance to weak collision, and resistance to strong collision as shown in Figure 31.6.

Figure 31.6 Criteria ofa hash function

Hash function
criteria

I
I I I

Onc-wayncss
Weak collision IStron~ collision

resistance resistance

One-wayness

A hash function must have one-wayness; a message digest is created by a one-way
hashing function. We must not be able to recreate the message from the digest. Some­
times it is difficult to make a hash function 100 percent one-way; the criteria state that it
must be extremely difficult or impossible to create the message if the message digest is
given. This is similar to the document/fingerprint case. No one can make a document
from a fingerprint.

SECTION 31.3 MESSAGE INTEGRITY 967

Example 31.1

Can we use a conventional lossless compression method as a hashing function?

Solution
We cannot. A lossless compression method creates a compressed message that is reversible. You
can uncompress the compressed message to get the original one.

Example 31.2

Can we use a checksum method as a hashing function?

Solution
We can. A checksum function is not reversible; it meets the first criterion. However, it does not
meet the other criteria.

Weak Collision Resistance

The second criterion, weak collision resistance, ensures that a message cannot easily
be forged. IfAlice creates a message and a digest and sends both to Bob, this criterion
ensures that Eve cannot easily create another message that hashes exactly to the same
digest. In other words, given a specific message and its digest, it is impossible (or at
least very difficult) to create another message with the same digest.

When two messages create the same digest, we say there is a collision. In a week
collision, given a message digest, it is very unlikely that someone can create a message
with exactly the same digest. A hash function must have weak collision resistance.

Strong Collision Resistance

The third criterion, strong collision resistance, ensures that we cannot find two messages
that hash to the same digest. This criterion is needed to ensure that Alice, the sender of the
message, cannot cause problems by forging a message. IfAlice can create two messages
that hash to the same digest, she can deny sending the first to Bob and claim that she sent
only the second.

This type of collision is called strong because the probability of collision is higher
than in the previous case. An adversary can create two messages that hash to the same
digest. For example, if the number of bits in the message digest is small, it is likely
Alice can create two different messages with the same message digest. She can send the
first to Bob and keep the second for herself. Alice can later say that the second was
the original agreed-upon document and not the first.

Suppose two different wills can be created that hash to the same digest. When the
time comes for the execution of the will, the second will is presented to the heirs. Since
the digest matches both wills, the substitution is successful.

Hash Algorithms: SHA-l

While many hash algorithms have been designed, the most common is SHA-l. SHA-1
(Secure Hash Algorithm 1) is a revised version of SHA designed by the National
Institute of Standards and Technology (NIST). It was published as a Federal Information
Processing Standard (PIPS).

968 CHAPTER 31 NETWORK SECURITY

A very interesting point about this algorithm and others is that they all follow the
same concept. Each creates a digest of length N from a multiple-block message. Each
block is 512 bits in length, as shown in Figure 31.7.

Figure 31.7 Message digest creation

512 bits

Message, multiple 5l2-bit blocks

•••

...

...

Message digest

·1

A buffer of N bits is initialized to a predetermined value. The algorithm mangles
this initial buffer with the first 512 bits of the message to create the first intermediate
message digest of N bits. This digest is then mangled with the second 512-bit block to
create the second intermediate digest. The (n - l)th digest is mangled with the nth block
to create the nth digest. If a block is not 512 bits, padding (Os) is added to make it so.
When the last block is processed, the resulting digest is the message digest for the
entire message. SHA-l has a message digest of 160 bits (5 words, each of 32 bits).

SHA-l hash algorithms create anN-bit message
digest out of a message of 512-bit blocks.

SHA-l has a message digest of 160 bits (5 words of 32 bits).

Word Expansion

Before processing, the block needs to be expanded. A block is made of 512 bits or 16
32-bit words, but we need 80 words in the processing phase. So the 16-word block needs
to be expanded to 80 words, wordO to word79.

Processing Each Block

Figure 31.8 shows the general outline for the processing of one block. There are 80 steps
in block processing. In each step, one word from the expanded block and one 32-bit
constant are mangled together and then operated on to create a new digest. At the
beginning of processing, the values of digest words (A, B, C, D, and E) are saved into
five temporary variables. At the end of the processing (after step 79), these values are

SECTION 31.4 MESSAGE AUTHENTICATION 969

Figure 31.8 Processing ofone block in SHA-1

Results of the previous block
or the initial digest

IAIBICIDtE I

• ,Wl}"Step 0 j.;... Ko
t t t t t

IAIBjCtDIEI

·•·-t -t -t -t -t
.~ Wi9Step 79
~ K79

t t t t t
IAIBICIDIEI

Final
adding

"

"" ,~

""rtJI lliI '-
+ l:t:Jl:!::JltJ l:!:J
'f 'f 'f 'f 'f

IAIBIC/DIE
Values for the next block

or the final digest

added to the values created from step 79. The detail of each step is complex and beyond
the scope of this book. The only thing we need to know is that each step mangles a
word of data and a constant to create a result that is fed to the next step.

31.4 MESSAGE AUTHENTICATION
A hash function guarantees the integrity of a message. It guarantees that the message has
not been changed. A hash function, however, does not authenticate the sender of the mes­
sage. When Alice sends a message to Bob, Bob needs to know if the message is coming
from Alice or Eve. To provide message authentication, Alice needs to provide proof that
it is Alice sending the message and not an imposter. A hash function per se cannot
provide such a proof. The digest created by a hash function is normally called a modifi­
cation detection code (MDC). The code can detect any modification in the message.

MAC

To provide message authentication, we need to change a modification detection code to
a message authentication code (MAC). An MDC uses a keyless hash function~ a
MAC uses a keyed hash function. A keyed hash function includes the symmetric key

970 CHAPTER 31 NETWORK SECURITY

between the sender and receiver when creating the digest. Figure 31.9 shows how Alice
uses a keyed hash function to authenticate her message and how Bob can verify the
authenticity of the message.

Figure 31.9 MAC, created by Alice and checked by Bob

Alice Bob

Message
and

MAC

Alice, using the symmetric key between herself and Bob (KAB) and a keyed hash
function, generates a MAC. She then concatenates the MAC with the original message
and sends the two to Bob. Bob receives the message and the MAC. He separates the
message from the MAC. He applies the same keyed hash function to the message using
the symmetric key KAB to get a fresh MAC. He then compares the MAC sent by Alice
with the newly generated MAC. If the two MACs are identical, the message has not been
modified and the sender of the message is definitely Alice.

HMAC

There are several implementations of MAC in use today. However, in recent 'years,
some MACs have been designed that are based on keyless hash functions such as
SHA-l. This idea is a hashed MAC, called HMAC, that can use any standard keyless
hash function such as SHA-l. HMAC creates a nested MAC by applying a keyless
hash function to the concatenation of the message and a symmetric key. Figure 31.10
shows the general idea.

A copy of the symmetric key is prepended to the message. The combination is
hashed using a keyless hash function, such as SHA-1. The result of this process is an
intermediate HMAC which is again prepended with the key (the same key), and the
result is again hashed using the same algorithm. The final result is an HMAC.

The receiver receives this final HMAC and the message. The receiver creates its
own HMAC from the received message and compares the two HMACs to validate the
integrity of the message and authenticate the data origin. Note that the details of an
HMAC can be more complicated than what we have shown here.

SECTION 31.5 DIGITAL SIGNATURE 971

Figure 31.10 HMAC

Message

HMAC

31.5 DIGITAL SIGNATURE
Although a MAC can provide message integrity and message authentication, it has a
drawback. It needs a symmetric key that must be established between the sender and
the receiver. A digital signature, on the other hand, can use a pair of asymmetric keys (a
public one and a private one).

We are all familiar with the concept of a signature. We sign a document to show
that it originated from us or was approved by us. The signature is proof to the recipient
that the document comes from the correct entity. When a customer signs a check to
himself, the bank needs to be sure that the check is issued by that customer and nobody
else. In other words, a signature on a document, when verified, is a sign of authentica­
tion; the document is authentic. Consider a painting signed by an artist. The signature
on the art, if authentic, means that the painting is probably authentic.

When Alice sends a message to Bob, Bob needs to check the authenticity of the
sender; he needs to be sure that the message comes from Alice and not Eve. Bob can ask
Alice to sign the message electronically. In other words, an electronic signature can
prove the authenticity ofAlice as the sender of the message. We refer to this type of sig­
nature as a digital signature.

Comparison

Before we continue any further, let us discuss the differences between two types of sig­
natures: conventional and digital.

Inclusion

A conventional signature is included in the document; it is part of the document. When
we write a check, the signature is on the check; it is not a separate document. On the
other hand, when we sign a document digitally, we send the signature as a separate doc­
ument. The sender sends two documents: the message and the signature. The recipient
receives both documents and verifies that the signature belongs to the supposed sender.
If this is proved, the message is kept; otherwise, it is rejected.

972 CHAPTER 31 NETWORK SECURITY

Verification Method

The second difference between the two types of documents is the method of verifying
the signature. In conventional signature, when the recipient receives a document, she
compares the signature on the document with the signature on file. If they are the same,
the document is authentic. The recipient needs to have a copy of this signature on file
for comparison. In digital signature, the recipient receives the message and the signa­
ture. A copy of the signature is not stored anywhere. The recipient needs to apply a
verification technique to the combination of the message and the signature to verify the
authenticity.

Relationship

In conventional signature, there is normally a one-to-many relationship between a sig­
nature and documents. A person, for example, has a signature that is used to sign many
checks, many documents, etc. In digital signature, there is a one-to-one relationship
between a signature and a message. Each message has its own signature. The signature
of one message cannot be used in another message. If Bob receives two messages, one
after another, from Alice, he cannot use the signature of the first message to verify the
second. Each message needs a new signature.

Duplicity

Another difference between the two types of signatures is a quality called duplicity. In
conventional signature, a copy of the signed document can be distinguished from the
original one on file. In digital signature, there is no such distinction unless there is a
factor of time (such as a timestamp) on the document. For example, suppose Alice
sends a document instructing Bob to pay Eve. If Eve intercepts the document and the
signature, she can resend it later to get money again from Bob.

Need for Keys
In conventional signature a signature is like a private "key" belonging to the signer of
the document. The signer uses it to sign a document; no one else has this signature. The
copy of the signature is on file like a public key; anyone can use it to verify a document,
to compare it to the original signature.

In digital signature, the signer uses her private key, applied to a signing algorithm,
to sign the document. The verifier, on the other hand, uses the public key of the signer,
applied to the verifying algorithm, to verify the document.

Can we use a secret (symmetric) key to both sign and verify a signature? The answer
is no for several reasons. First, a secret key is known only between two entities (Alice
and Bob, for example). So if Alice needs to sign another document and send it to Ted,
she needs to use another secret key. Second, as we will see, creating a secret key for a
session involves authentication, which normally uses digital signature. We have a vicious
cycle. Third, Bob could use the secret key between himself and Alice, sign a document,
send it to Ted, and pretend that it came from Alice.

A digital signature needs a public-key system.

SECTION 31.5 DIGITAL SIGNATURE 973

Process

Digital signature can be achieved in two ways: signing the document or signing a digest
of the document.

Signing the Document

Probably, the easier, but less efficient way is to sign the document itself. Signing a doc­
ument is encrypting it with the private key of the sender; verifying the document is
decrypting it with the public key of the sender. Figure 31.11 shows how signing and
verifying are done.

Figure 31.11 Signing the message itself in digital signature

~ t tkeys

Alice i j Bob

- ~ - ~

Plaintext Signed document Plaintext
Encryption Decryption.-

Signing Data flow Verifying

We should make a distinction between private and public keys as used in digital
signature and public and private keys as used for confidentiality. In the latter, the private
and public keys of the receiver are used in the process. The sender uses the public key
of the receiver to encrypt; the receiver uses his own private key to decrypt. In digital
signature, the private and public keys of the sender are used. The sender uses her pri­
vate key; the receiver uses the public key of the sender.

In a cryptosystem, we use the private and public keys of the receiver;
in digital signature, we use the private and public key of the sender.

Signing the Digest

We mentioned that the public key is very inefficient in a cryptosystem if we are dealing
with long messages. In a digital signature system, our messages are normally long, but
we have to use public keys. The solution is not to sign the message itself; instead, we
sign a digest of the message. As we learned, a carefully selected message digest has a
one-to-one relationship with the message. The sender can sign the message digest, and
the receiver can verify the message digest. The effect is the same. Figure 31.12 shows
signing a digest in a digital signature system.

A digest is made out of the message at Alice's site. The digest then goes through
the signing process using Alice's private key. Alice then sends the message and the sig­
nature to Bob. As we will see later in the chapter, there are variations in the process that
are dependent on the system. For example, there might be additional calculations before
the digest is made or other secret keys might be used. In some systems, the signature is
a set of values.

974 CHAPTER 31 NETWORK SECURITY

Figure 31.12 Signing the digest in a digital signature

Sign

Alice

Message
and

signature

Verify

Bob

&

At Bob's site, using the same public hash function, a digest is first created out of
the received message. Calculations are done on the signature and the digest. The verifying
process also applies criteria on the result of the calculation to detennine the authenticity
of the signature. If authentic, the message is accepted; otherwise, it is rejected.

Services
A digital signature can provide three out of the five services we mentioned for a security
system: message integrity, message authentication, and nonrepudiation. Note that a dig­
ital signature scheme does not provide confidential communication. If confidentiality is
required, the message and the signature must be encrypted using either a secret-key or
public-key cryptosystem.

Message Integrity

The integrity of the message is preserved even if we sign the whole message because
we cannot get the same signature if the message is changed. The signature schemes today
use a hash function in the signing and verifying algorithms that preserve the integrity of
the message.

A digital signature today provides message integrity.

Message Authentication

A secure signature scheme, like a secure conventional signature (one that cannot be
easily copied), can provide message authentication. Bob can verify that the message is
sent by Alice because Alice's public key is used in verification. Alice's public key cannot
create the same signature as Eve's private key.

Digital signature provides message authentication.

SECTION 31.5 DIGITAL SIGNATURE 975

Message Nonrepudiation

If Alice signs a message and then denies it, can Bob later prove that Alice actually
signed it? For example, if Alice sends a message to a bank (Bob) and asks to transfer
$10,000 from her account to Ted's account, can Alice later deny that she sent this
message? With the scheme we have presented so far, Bob might have a problem.
Bob must keep the signature on file and later use Alice's public key to create the
original message to prove the message in the file and the newly created message are
the same. This is not feasible because Alice may have changed her private/public
key during this time; she may also claim that the file containing the signature is not
authentic.

One solution is a trusted third party. People can create a trusted party among them­
selves. In Chapter 32, we will see that a trusted party can solve many other problems
concerning security services and key exchange. Figure 31.13 shows how a trusted party
can prevent Alice from denying that she sent the message.

Figure 31.13 Using a trusted center for nonrepudiation

Alice, Bob,
M,SA

M: Message
SA: Signature from Alice
ST: Signature from trusted center

Trusted center

Alice, Bob,
M,ST

Alice creates a signature from her message (SA) and sends the message, her iden­
tity, Bob's identity, and the signature to the center. The center, after checking that
Alice's public key is valid, verifies through Alice's public key that the message comes
from Alice. The center then saves a copy of the message with the sender identity, recip­
ient identity, and a timestamp in its archive. The center uses its private key to create
another signature (ST) from the message. The center then sends the message, the new
signature, Alice's identity, and Bob's identity to Bob. Bob verifies the message using
the public key of the trusted center.

If in the future Alice denies that she has sent the message, the center can show a
copy of the saved message. If Bob's message is a duplicate of the message saved at the
center, Alice will lose the dispute. To make everything confidential, a level of encryption!
decryption can be added to the scheme as discussed in the next section.

Nonrepudiation can be provided using a trusted party.

976 CHAPTER 31 NETWORK SECURITY

Signature Schemes

Several signature schemes have evolved during the last few decades. Some of them
have been implemented. Such as RSA and DSS (Digital Signature Standard) schemes.
The latter will probably become the standard. However, the details of these schemes are
beyond the scope of this book.

31.6 ENTITY AUTHENTICATION
Entity authentication is a technique designed to let one party prove the identity of
another party. An entity can be a person, a process, a client, or a server. The entity
whose identity needs to be proved is called the claimant; the party that tries to prove
the identity of the claimant is called the verifier. When Bob tries to prove the identity of
Alice, Alice is the claimant, and Bob is the verifier.

There are two differences between message authentication and entity authentication.
First, message authentication may not happen in real time; entity authentication does.
In the former, Alice sends a message to Bob. When Bob authenticates the message, Alice
mayor may not be present in the communication process. On the other hand, when
Alice requests entity authentication, there is no real message communication involved
until Alice is authenticated by Bob. Alice needs to be online and takes part in the process.
Only after she is authenticated can messages be communicated between Alice and Bob.
Message authentication is required when an e-mail is sent from Alice to Bob. Entity
authentication is required when Alice gets cash from an automatic teller machine. Second,
message authentication simply authenticates one message; the process needs to be
repeated for each new message. Entity authentication authenticates the claimant for the
entire duration of a session.

In entity authentication, the claimant must identify herself to the verifier. This can be
done with one of three kinds of witnesses: something known, something possessed, or
something inherent.

o Something known. This is a secret known only by the claimant that can be checked
by the verifier. Examples are a password, a PIN number, a secret key, and a private key.

o Something possessed. This is something that can prove the claimant's identity.
Examples are a passport, a driver's license, an identification card, a credit card, and
a smart card.

o Something inherent. This is an inherent characteristic of the claimant. Examples
are conventional signature, fingerprints, voice, facial characteristics, retinal pattern,
and handwriting.

Passwords

The simplest and the oldest method of entity authentication is the password, something
that the claimant possesses. A password is used when a user needs to access a system to
use the system's resources (log-in). Each user has a user identification that is public and
a password that is private. We can divide this authentication scheme into two separate
groups: the fixed password and the one-time password.

SECTION 31.6 ENTITY AUTHENTICATION 977

Fixed Password

In this group, the password is fixed; the same password is used over and over for every
access. This approach is subject to several attacks.

o Eavesdropping. Eve can watch Alice when she types her password. Most systems,
as a security measure, do not show the characters a user types. Eavesdropping can
take a more sophisticated form. Eve can listen to the line and then intercept the
message, thereby capturing the password for her own use.

o Stealing a Password. The second type of attack occurs when Eve tries to physically
steal Alice's password. This can be prevented if Alice does not write down the
password; instead, she just commits it to memory. Therefore, a password should be
very simple or else related to something familiar to Alice, which makes the password
vulnerable to other types of attacks.

o Accessing a file. Eve can hack into the system and get access to the file where the
passwords are stored. Eve can read the file and find Alice's password or even
change it. To prevent this type of attack, the file can be read/write protected. How­
ever, most systems need this type of file to be readable by the public.

o Guessing. Eve can log into the system and try to guess Alice's password by trying
different combinations of characters. The password is particularly vulnerable if the
user is allowed to choose a short password (a few characters). It is also vulnerable
ifAlice has chosen something unimaginative, such as her birthday, her child's name,
or the name of her favorite actor. To prevent guessing, a long random password is
recommended, something that is not very obvious. However, the use of such a random
password may also create a problem; Alice might store the password somewhere
so as not to forget it. This makes the password subject to stealing.

A more secure approach is to store the hash of the password in the password file
(instead of the plaintext password). Any user can read the contents of the file, but,
because the hash function is a one-way function, it is almost impossible to guess the
value of the password. The hash function prevents Eve from gaining access to the system
even though she has the password file. However, there is a possibility of another type of
attack called the dictionary attack. In this attack, Eve is interested in finding one pass­
word, regardless of the user ID. For example, if the password is 6 digits, Eve can create
a list of 6-digit numbers (000000 to 999999), and then apply the hash function to every
number; the result is a list of 1 million hashes. She can then get the password file and
search the second-column entries to find a match. This could be programmed and run
offline on Eve's private computer. After a match is found, Eve can go online and use the
password to access the system. We will see how to make this attack more difficult in the
third approach.

Another approach is called salting the password. When the password string is created,
a random string, called the salt, is concatenated to the password. The salted password is
then hashed. The rD, salt, and the hash are then stored in the file. Now, when a user asks
for access, the system extracts the salt, concatenates it with the received password,
makes a hash out of the result, and compares it with the hash stored in the file. If there
\~ a matc\\., a.cce.~~ \~ %,tal\te.d:, C)fue.N1\I2,e., \t \~ de.me.d. Salt\w~, mak.e.12, the. d\ct\c)l\aI'j attack
more difficult. If the original password is 6 digits and the salt is 4 digits, then hashing is

978 CHAPTER 31 NETWORK SECURITY

done over a lO-digit value. This means that Eve now needs to make a list of 10 million
items and create a hash for each of them. The list of hashes has 10 million entries and
the comparison takes much longer. Salting is very effective if the salt is a very long ran­
dom number. The UNIX operating system uses a variation of this method.

In another approach, two identification techniques are combined. A good example
of this type of authentication is the use of an ATM card with a PIN (personal identifica­
tion number). The card belongs to the category "something possessed" and the PIN
belongs to the category "something known." The PIN is actually a password that
enhances the security of the card. If the card is stolen, it cannot be used unless the PIN
is known. The PIN, however, is traditionally very short so it is easily remembered by
the owner. This makes it vulnerable to the guessing type of attack.

One-Time Password

In this type of scheme, a password is used only once. It is called the one-time password.
A one-time password makes eavesdropping and stealing useless. However, this approach
is very complex, and we leave its discussion to some specialized books.

Challenge-Response

In password authentication, the claimant proves her identity by demonstrating that she
knows a secret, the password. However, since the claimant reveals this secret, the secret
is susceptible to interception by the adversary. In challenge-response authentication,
the claimant proves that she knows a secret without revealing it. In other words, the
claimant does not reveal the secret to the verifier; the verifier either has it or finds it.

In challenge-response authentication,
the claimant proves that she knows a secret without revealing it.

The challenge is a time-varying value such as a random number or a timestamp
which is sent by the verifier. The claimant applies a function to the challenge and sends
the result, called a response, to the verifier. The response shows that the claimant knows
the secret.

The challenge is a time-varying value sent by the verifier;
the response is the result of a function applied on the chanenge.

Using a Symmetric-Key Cipher

In the first category, the challenge-response authentication is achieved using symmetric­
key encryption. The secret here is the shared secret key, known by both the claimant
and the verifier. The function is the encrypting algorithm applied on the challenge.
Figure 31.14 shows one approach. The first message is not part of challenge-response,
it only informs the verifier that the claimant wants to be challenged. The second mes­
sage is the challenge. And RB is the nonce randomly chosen by the verifier to challenge
the claimant. The claimant encrypts the nonce using the shared secret key known only
to the claimant and the verifier and sends the result to the verifier. The verifier decrypts

SECTION 31.6 ENTITY AUTHENTICATION 979

Figure 31.14 Challenge/response authentication using a nonce

Bob
(server)

Alice
(user)

...-----------iAlicel------------'l~

I+----------i RB 1-----------'

the message. If the nonce obtained from decryption is the same as the one sent by the
verifier, Alice is granted access.

Note that in this process, the claimant and the verifier need to keep the symmetric
key used in the process secret. The verifier must also keep the value of the nonce for
claimant identification until the response is returned.

The reader may have noticed that use of a nonce prevents a replay of the third mes­
sage by Eve. Eve cannot replay the third message and pretend that it is a new request
for authentication by Alice because once Bob receives the response, the value of RB is
not valid any more. The next time a new value is used.

In the second approach, the time-varying value is a timestamp, which obviously
changes with time. In this approach the challenge message is the current time sent from
the verifier to the claimant. However, this supposes that the client and the server clocks
are synchronized; the claimant knows the current time. This means that there is no need
for the challenge message. The first and third messages can be combined. The result is
that authentication can be done using one message, the response to an implicit challenge,
the current time. Figure 31.15 shows the approach.

Figure 31.15 Challenge-response authentication using a timestamp

Alice
(user)

Bob
(server)---

Alice, T

Using Keyed-Hash Functions

Instead of using encryption and decryption for entity authentication, we can use a
keyed-hash function (MAC). There are two advantages to this scheme. First, the

980 CHAPTER 31 NETWORK SECURITY

encryption/decryption algorithm is not exportable to some countries. Second, in using a
keyed-hash function, we can preserve the integrity of challenge and response messages
and at the same time use a secret, the key.

Let us see how we can use a keyed-hash function to create a challenge response with
a timestamp. Figure 31.16 shows the scheme.

Figure 31.16 Challenge-response authentication using a keyed-hash function

Alice
(user)

Alice, T I n + T

Hash

Bob
(server)

Note that in this case, the timestamp is sent both as plaintext and as text scrambled
by the keyed-hash function. When Bob receives the message, he takes the plaintext T,
applies the keyed-hash function, and then compares his calculation with what he
received to determine the authenticity ofAlice.

Using an Asymmetric-Key Cipher

Instead of a symmetric-key cipher, we can use an asymmetric-key cipher for entity
authentication. Here the secret must be the private key of the claimant. The claimant
must show that she owns the private key related to the public key that is available to
everyone. This means that the verifier must encrypt the challenge using the public key
of the claimant; the claimant then decrypts the message using her private key. The
response to the challenge is the decrypted challenge. We show two approaches: one for
unidirectional authentication and one for bidirectional authentication. In one approach,
Bob encrypts the challenge using Alice's public key. Alice decrypts the message with
her private key and sends the nonce to Bob. Figure 31.17 shows this approach.

Figure 31.17 Authentication, asymmetric-key

Alice
(user)

Alice

Bob
(server)-

SECTION 31.7 KEY MANAGEMENT 981

Using Digital Signature

We can use digital signature for entity authentication. In this method, we let the claim­
ant use her private key for signing instead of using it for decryption. In one approach
shown in Figure 31.18, Bob uses a plaintext challenge. Alice signs the response.

Figure 31.18 Authentication, using digital signature

Alice
(user)

Alice

Bob

31.7 KEY MANAGEMENT

Bob
(server)

We have used symmetric-key and asymmetric-key cryptography in our discussion
throughout the chapter. However, we never discussed how secret keys in symmetric-key
cryptography and how public keys in asymmetric-key cryptography are distributed and
maintained. In this section, we touch on these two issues. We first discuss the distribu­
tion of symmetric keys; we then discuss the distribution of asymmetric keys.

Symmetric-Key Distribution
We have learned that symmetric-key cryptography is more efficient than asymmetric­
key cryptography when we need to encrypt and decrypt large messages. Symmetric­
key cryptography, however, needs a shared secret key between two parties.

If Alice needs to exchange confidential messages with N people, she needs N different
keys. What if N people need to communicate with one another? A total ofN(N - 1)/2 keys
is needed. Each person needs to have N - 1 keys to communicate with each of the other
people, but because the keys are shared, we need only N(N - 1)12. This means that if
1 million people need to communicate with one another, each person has almost 0.5 mil­
lion different keys; in total, almost 1 billion keys are needed. This is normally referred to as
the N2 problem because the number of required keys for N entities is close to N2.

The number of keys is not the only problem; the distribution of keys is another. If
Alice and Bob want to communicate, they need to somehow exchange a secret key; if
Alice wants to communicate with 1 million people, how can she exchange 1 million
keys with 1 million people? Using the Internet is definitely not a secure method.

982 CHAPTER 31 NETWORK SECURITY

It is obvious that we need an efficient way of maintaining and distributing secret
keys.

Key Distribution Center: KDC

A practical solution is the use of a trusted party, referred to as a key distribution cen­
ter (KDC). To reduce the number of keys, each person establishes a shared secret key
with the KDC as shown in Figure 31.19.

Figure 31.19 KDC

Alice~. KAlice K ~ Bob~~~ Bb ~~~

& K~'~~""';-"'~"'K~~~~~ &Ann George
Ann - - ---------- c;:::;:::u:J ---------- - - George

E:9
• " - K Betsy
: Krd ", KDCIe ,, ..., ..

Ted &,/& Betsy

A secret key is established between KDC and each member. Alice has a secret key
with KDC, which we refer to as KAlice; Bob has a secret key with KDC, which we refer
to as KBob; and so on. Now the question is, How can Alice send a confidential message
to Bob? The process is as follows:

1. Alice sends a request to KDC, stating that she needs a session (temporary) secret
key between herself and Bob.

2. KDC informs Bob of Alice's request.

3. If Bob agrees, a session key is created between the two.

The secret key between Alice and Bob that is established with the KDC is used to
authenticate Alice and Bob to the KDC and to prevent Eve from impersonating either
of them. We discuss how a session key is established between Alice and Bob later in the
chapter.

Session Keys

A KDC creates a secret key for each member. This secret key can be used only between
the member and the KDC, not between two members. If Alice needs to communicate
secretly with Bob, she needs a secret key between herself and Bob. A KDC can create a
session (temporary) key between Alice and Bob using their keys with the center. The
keys of Alice and Bob are used to authenticate Alice and Bob to the center and to each
other before the session key is established. After communication is terminated, the ses­
sion key is no longer valid.

A session symmetric key between two parties is used only once.

SECTION 31.7 KEY MANAGEMENT 983

Several different approaches have been proposed to create the session key using
ideas we previously discussed for entity authentication.

Let us discuss one approach, the simplest one, as shown in Figure 31.20. Although
this system has some flaws, it shows the idea. More sophisticated approaches can be
found in security books.

Figure 31.20 Creating a session key between Alice and Bob using KDC

KDC­u:;:L::UJ

~--••-----1 Alice, Bob I---~~I

Bob_....

D Step 1 Alice sends a plaintext message to the KDC to obtain a symmetric session
key between Bob and herself. The message contains her registered identity (the
word Alice in the figure) and the identity of Bob (the word Bob in the figure). This
message is not encrypted, it is public. KDC does not care.

D Step 2 KDC receives the message and creates what is called a ticket. The ticket is
encrypted using Bob's key (KB). The ticket contains the identities of Alice and Bob
and the session key (KAB). The ticket with a copy of the session key is sent to Alice.
Alice receives the message, decrypts it, and extracts the session key. She cannot
decrypt Bob's ticket; the ticket is for Bob, not for Alice. Note that we have a double
encryption in this message; the ticket is encrypted and the entire message is also
encrypted. In the second message, Alice is actually authenticated to the KDC,
because only Alice can open the whole message using her secret key with KDC.

D Step 3 Alice sends the ticket to Bob. Bob opens the ticket and knows that Alice needs
to send messages to him using KAB as the session key. Note that in this message,
Bob is authenticated to the KDC because only Bob can open the ticket. Since Bob is
authenticated to the KDC, he is also authenticated to Alice who trusts the KDC. In
the same way, Alice is also authenticated to Bob, because Bob trusts the KDC and
the KDC has sent the ticket to Bob which includes the identity ofAlice.

Kerberos

Kerberos is an authentication protocol and at the same time a KDC that has become
very popular. Several systems including Windows 2000 use Kerberos. It is named after
the three-headed dog in Greek mythology that guards the Gates of Hades. Originally
designed at M.LT., it has gone through several versions. We discuss only version 4, the
most popular.

Bob (Server)

984 CHAPTER 31 NETWORK SECURITY

Servers Three servers are involved in the Kerberos protocol: an authentication server
(AS), a ticket-granting server (TGS), and a real (data) server that provides services to
others. In our examples and figures Bob is the real server and Alice is the user request­
ing service. Figure 31.21 shows the relationship between these three servers.

Figure 31.21 Kerberos servers

1. Request ticket for TGS
2. Alice-TGS session key

and ticket for TGS Iil
Alire~:~ AS ,:;:;,

~II(-~ '8
3. Request ticket for Bob
4. Alice-Bob session key

__an_d_tl_'c_ke_t_fo_r_Bo_b •~

5. Request access ~
6. Grant access

o Authentication Server (AS). AS is the KDC in Kerberos protocol. Each user reg­
isters with AS and is granted a user identity and a password. AS has a database
with these identities and the corresponding passwords. AS verifies the user, issues
a session key to be used between Alice and TGS, and sends a ticket for TGS.

o Ticket-Granting Server (TGS). TGS issues a ticket for the real server (Bob). It
also provides the session key (KAB) between Alice and Bob. Kerberos has sepa­
rated the user verification from ticket issuing. In this way, although Alice verifies
her ID just once with AS, she can contact TGS multiple times to obtain tickets for
different real servers.

o Real Server. The real server (Bob) provides services for the user (Alice). Kerberos
is designed for a client/server program such as FTP, in which a user uses the client
process to access the server process. Kerberos is not used for person-to-person
authentication.

Operation A client process (Alice) can access a process running on the real server
(Bob) in six steps as shown in Figure 31.22.

o Step 1. Alice sends her request to AS in plaintext, using her registered identity.

o Step 2. AS sends a message encrypted with Alice's symmetric key KA- The mes­
sage contains two items: a session key Ks that is used by Alice to contact TGS and a
ticket for TGS that is encrypted with the TGS symmetric key KTG. Alice does not
know KA, but when the message arrives, she types her symmetric password. The
password and the appropriate algorithm together create KA if the password is correct.
The password is then immediately destroyed; it is not sent to the network, and it does

SECTION 31.7 KEY MANAGEMENT 985

Figure 31.22 Kerberos example

Server (Bob)

AS TGS =

i -Alice

i u::::u::u
E:=l
~iii.!!!!!!

1--1"".. '"

I ~B ~KB I
1I;IIf----------- l:2] c'0lice, K

AB
I-------·~I

1+---------1f&ful---------·~~I:

not stay in the terminal. It is only used for a moment to create KA- The process now
uses KA to decrypt the message sent. Both Ks and the ticket are extracted.

o Step 3. Alice now sends three items to TGS. The first is the ticket received from
AS. The second is the name of the real server (Bob), the third is a timestamp which
is encrypted by Ks. The timestamp prevents a replay by Eve.

o Step 4. Now, TGS sends two tickets, each containing the session key between
Alice and Bob KAB . The ticket for Alice is encrypted with Ks; the ticket for Bob is
encrypted with Bob's key KB. Note that Eve cannot extract KAB because she does
not know Ks or KB. She cannot replay step 3 because she cannot replace the timestamp
with a new one (she does not know KS)' Even if she is very quick and sends the
step 3 message before the timestamp has expired, she still receives the same two
tickets that she cannot decipher.

o Step 5. Alice sends Bob's ticket with the timestamp encrypted by KAB .

o Step 6. Bob confirms the receipt by adding 1 to the timestamp. The message is
encrypted with KAB and sent to Alice.

Using Different Servers Note that if Alice needs to receive services from different
servers, she need repeat only steps 3 to 6. The first two steps have verified Alice's iden­
tity and need not be repeated. Alice can ask TGS to issue tickets for multiple servers by
repeating steps 3 to 6.

986 CHAPTER 31 NETWORK SECURITY

Realms Kerberos allows the global distribution of ASs and TGSs, with each system
called a realm. A user may get a ticket for a local server or a remote server. In the sec­
ond case, for example, Alice may ask her local TGS to issue a ticket that is accepted by
a remote TGS. The local TGS can issue this ticket if the remote TGS is registered with
the local one. Then Alice can use the remote TGS to access the remote real server.

Public-Key Distribution

In asymmetric-key cryptography, people do not need to know a symmetric shared key.
If Alice wants to send a message to Bob, she only needs to know Bob's public key,
which is open to the public and available to everyone. If Bob needs to send a message
to Alice, he only needs to know Alice's public key, which is also known to everyone. In
public-key cryptography, everyone shields a private key and advertises a public key.

In public-key cryptography, everyone has access to everyone's public key;
public keys are available to the public.

Public keys, like secret keys, need to be distributed to be useful. Let us briefly dis­
cuss the way public keys can be distributed.

Public Announcement

The naive approach is to announce public keys publicly. Bob can put his public key on
his website or announce it in a local or national newspaper. When Alice needs to send a
confidential message to Bob, she can obtain Bob's public key from his site or from the
newspaper, or she can even send a message to ask for it. Figure 31.23 shows the situation.

Figure 31.23 Announcing a public key

I
I

\ I I

" I "'..... ',:,' .".'
" \ I I .".'

...... \ I '

------'-..... j :'- -----
Public key

Bob

This approach, however, is not secure; it is subject to forgery. For example, Eve
could make such a public announcement. Before Bob can react, damage could be done.
Eve can fool Alice into sending her a message that is intended for Bob. Eve could also
sign a document with a corresponding forged private key and make everyone believe it
was signed by Bob. The approach is also vulnerable if Alice directly requests Bob's
public key. Eve can intercept Bob's response and substitute her own forged public key
for Bob's public key.

SECTION 31.7 KEY MANAGEMENT 987

Trusted Center

A more secure approach is to have a trusted center retain a directory of public keys. The
directory, like the one used in a telephone system, is dynamically updated. Each user
can select a private/public key, keep the private key, and deliver the public key for inser­
tion into the directory. The center requires that each user register in the center and
prove his or her identity. The directory can be publicly advertised by the trusted center.
The center can also respond to any inquiry about a public key. Figure 31.24 shows the
concept.

Figure 31.24 Trusted center

,,,
\... \

"', \...... ,
" \.

Directory

· ·· ·
Alice KA

· ·· ·· ·
Bob KB

· ·· ·· ·

Trusted center

Controlled Trusted Center

A higher level of security can be achieved if there are added controls on the distribution
of the public key. The public-key announcements can include a timestamp and be
signed by an authority to prevent interception and modification of the response. IfAlice
needs to know Bob's public key, she can send a request to the center including Bob's
name and a timestamp. The center responds with Bob's public key, the original request,
and the timestamp signed with the private key of the center. Alice uses the public key of
the center, known by all, to decrypt the message and extract Bob's public key. Figure 31.25
shows one scenario.

Certification Authority

The previous approach can create a heavy load on the center if the number of requests
is large. The alternative is to create public-key certificates. Bob wants two things: he
wants people to know his public key, and he wants no one to accept a public key forged
as his. Bob can go to a certification authority (CA)-a federal or state organization
that binds a public key to an entity and issues a certificate. The CA has a well-known
public key itself that cannot be forged. The CA checks Bob's identification (using a

988 CHAPTER 31 NETWORK SECURITY

Figure 31.25 Controlled trusted center

Directory

· ·· ·· ·
Alice KA

· ·· ·· ·
Bob Kg

· :··
Alice
r'

- - Trusted center cw:::w:::J
E:::3-

Need Bob's key, Time

KCenter

Need Bob's key, Time, KB

picture ID along with other proof). It then asks for Bob's public key and writes it on the
certificate. To prevent the certificate itself from being forged, the CA signs the certificate
with its private key. Now Bob can upload the signed certificate. Anyone who wants
Bob's public key downloads the signed certificate and uses the public key of the center
to extract Bob's public key. Figure 31.26 shows the concept.

Figure 31.26 Certification authority

Directory

__A"p~IX jL.....-K......B_I- _

=-=
cw:::w:::J Trusted
E3 center-

Issue

· ·· :·
Alice KA

· ·· ·· ·
,~ Bob Kg

· ·· :·
Bob

..
-",' I I

.. I I
,,' I I

" II I
I I

I I
I

Announce to pUblic
I

\ I
, I

\ I
, I

".... ',I
" \ I

.... , , I..
-------- ~--- -

SECTION 31.7 KEY MANAGEMENT 989

X.509 Although the use of a CA has solved the problem of public-key fraud, it has
created a side effect. Each certificate may have a different format. IfAlice wa.!1ts to use
a program to automatically download different certificates and digests belonging to dif­
ferent people, the program may not be able to do so. One certificate may have the public
key in one format and another in another format. The public key may be on the first line
in one certificate and on the third line in another. Anything that needs to be used univer­
sally must have a universal format.

To remove this side effect, lTD has designed a protocol called X.509, which has been
accepted by the Internet with some changes. X.509 is a way to describe the certificate in a
structured way. It uses a well-known protocol called ASN.1 (Abstract Syntax Notation 1)
that defines fields familiar to C programmers. The following lists the fields in a certificate.

D Version This field defines the version of X.509 of the certificate. The version
number started at 0; the current version is 2 (the third version).

o Serial number This field defines a number assigned to each certificate. The value
is unique for each certificate issued.

o Signature This field, for which the name is inappropriate, identifies the algorithm
used to sign the certificate. Any parameter that is needed for the signature is also
defined in this field.

o Issuer This field identifies the certification authority that issued the certificate. The
name is normally a hierarchy of strings that defines a country, state, organization,
department, and so on.

o Period of validity This field defines the earliest and the latest times the certificate
is valid.

o Subject This field defines the entity to which the public key belongs. It is also a
hierarchy of strings. Part of the field defines what is called the common name,
which is the actual name of the beholder of the key.

o Subject's public key This field defines the subject's public key, the heart of the
certificate. The field also defines the corresponding algorithm (RSA, for example)
and its parameters.

o Issuer unique identifier This optional field allows two issuers to have the same
issuer field value, if the issuer unique identifiers are different.

D Subject unique identifier This optional field allows two different subjects to have
the same subject field value, if the subject unique identifiers are different.

o Extension This field allows issuers to add more private information to the certificate.

o Encrypted This field contains the algorithm identifier, a secure hash of the other
fields, and a digital signature of that hash.

Public-Key Infrastructures (PKI)

When we want to use public keys universally, we have a problem similar to secret-key
distribution. We found that we cannot have only one KDC to answer the queries. We
need many servers. In addition, we found that the best solution is to put the servers in a
hierarchical relationship with one another. Likewise, a solution to public-key queries is
a hierarchical structure called a public-key infrastructure (PKI). Figure 31.27 shows
an example of this hierarchy.

990 CHAPTER 31 NETWORK SECURITY

Figure 31.27 PKI hierarchy

Level-l
CAl

At the first level, we can have a root CA that can certify the performance of CAs in
the second level; these level-l CAs may operate in a large geographic or logical area.
The level-2 CAs may operate in smaller geographic areas.

In this hierarchy, everybody trusts the root. But people mayor may not trust inter­
mediate CAs. If Alice needs to get Bob's certificate, she may find a CA somewhere to
issue the certificate. But Alice may not trust that CA. In a hierarchy Alice can ask the
next-higher CA to certify the original CA. The inquiry may go all the way to the root.

31.8 RECOMMENDED READING
For more details about the subjects discussed in this chapter, we recommend the following
books and sites. The items in brackets [...] refer to the reference list at the end of the text.

Books

Several books are dedicated to network security, such as [PHS02], [Bis03], and [SalO3].

31.9 KEY TERMS
authentication server (AS)

certification authority (CA)

challenge-response authentication

claimant

dictionary attack

digital signature

eavesdropping

entity authentication

fingerprint

fixed password

hash function

hashed message authentication code
(HMAC)

identification

integrity

Kerberos

key distribution center (KDC)

message authentication

message authentication code (MAC)

message confidentiality or privacy

message digest

message integrity

message nonrepudiation

modification detection code
(MDC)

nonce

nonrepudiation

one-time password

one-wayness

password

privacy

public-key infrastructure
(PKI)

salting

SECTION 31.10 SUMMARY 991

session key

SHA-I

signature scheme

signing algorithm

strong collision

ticket

ticket-granting server
(TGS)

verifier

verifying algorithm

weak collision

X.509

31.10 SUMMARY
D Cryptography can provide five services. Four of these are related to the message

exchange between Alice and Bob. The fifth is related to the entity trying to access a
system for using its resources.

D Message confidentiality means that the sender and the receiver expect privacy.

D Message integrity means that the data must arrive at the receiver exactly as sent.

D Message authentication means that the receiver is ensured that the message is coming
from the intended sender, not an imposter.

D Nonrepudiation means that a sender must not be able to deny sending a message
that he sent.

D Entity authentication means to prove the identity of the entity that tries to access
the system's resources.

D A message digest can be used to preserve the integrity of a document or a message.
A hash function creates a message digest out of a message.

D A hash function must meet three criteria: one-wayness, resistance to weak collision,
and resistance to strong collision.

D A keyless message digest is used as a modification detection code (MDC). It guar­
antees the integrity of the message. To authenticate the data origin, one needs a
message authentication code (MAC).

D MACs are keyed hash functions that create a compressed digest from the message
added with the key. The method has the same basis as encryption algorithms.

D A digital signature scheme can provide the same services provided by a conven­
tional signature. A conventional signature is included in the document; a digital
signature is a separate entity.

D Digital signature provides message integrity, authentication, and nonrepudiation.
Digital signature cannot provide confidentiality for the message. If confidentiality
is needed, a cryptosystem must be applied over the scheme.

992 CHAPTER 31 NETWORK SECURiTY

o A digital signature needs an asymmetric-key system.

o In entity authentication, a claimant proves her identity to the verifier by using one
of the three kinds of witnesses: something known, something possessed, or some­
thing inherent.

o In password-based authentication, the claimant uses a string of characters as some­
thing she knows.

o Password-based authentication can be divided into two broad categories: fixed and
one-time.

o In Challenge-response authentication, the claimant proves that she knows a secret
without actually sending it.

o Challenge-response authentication can be divided into four categories: symmetric­
key ciphers, keyed-hash functions, asymmetric-key ciphers, and digital signature.

D A key distribution center (KDC) is a trusted third party that assigns a symmetric
key to two parties.

o KDC creates a secret key only between a member and the center. The secret key
between members needs to be created as a session key when two members con­
tact KDC.

D Kerberos is a popular session key creator protocol that requires an authentication
server and a ticket-granting server.

D A certification authority (CA) is a federal or state organization that binds a public
key to an entity and issues a certificate.

D A public-key infrastructure (PKI) is a hierarchical system to answer queries about
key certification.

31.11 PRACTICE SET

Review Questions

1. What is a nonce?

2. What is the N2 problem?

3. Name a protocol that uses a KDC for user authentication.

4. What is the purpose of the Kerberos authentication server?

5. What is the purpose of the Kerberos ticket-granting server?

6. What is the purpose of X,S09?

7. What is a certification authority?

8. What are some advantages and disadvantages of using long passwords?

9. We discussed fixed and one-time passwords as two extremes. What about frequently
changed passwords? How do you think this scheme can be implemented? What are
the advantages and disadvantages?

10. How can a system prevent a guessing attack on a password? How can a bank
prevent PIN guessing if someone has found or stolen a bank card and tried to
use it?

SECTION 31.11 PRACTICE SET 993

Exercises

11. A message is made of 10 numbers between 00 and 99. A hash algorithm creates a
digest out of this message by adding all numbers modulo 100. The resulting digest
is a number between 00 and 99. Does this algorithm meet the first criterion of a
hash algorithm? Does it meet the second criterion? Does it meet the third criterion?

12. A message is made of 100 characters. A hash algorithm creates a digest out of this
message by choosing characters 1, 11,21, ..., and 91. The resulting digest has
10 characters. Does this algorithm meet the first criterion of a hash algorithm?
Does it meet the second criterion? Does it meet the third criterion?

13. A hash algorithm creates a digest of N bits. How many different digests can be
created from this algorithm?

14. At a party, which is more probable, a person with a birthday on a particular day or
two (or more) persons having the same birthday?

15. How is the solution to Exercise 14 related to the second and third criteria of a hashing
function?

16. Which one is more feasible, a fixed-size digest or a variable-size digest? Explain
your answer.

17. A message is 20,000 characters. We are using a digest of this message using SHA-l.
After creating the digest, we decided to change the last 10 characters. Can we say
how many bits in the digest will be changed?

18. Are the processes of creating a MAC and of signing a hash the same? What are the
differences?

19. When a person uses a money machine to get cash, is this a message authentication,
an entity authentication, or both?

20. Change Figure 31.14 to provide two-way authentication (Alice for Bob and Bob
for Alice).

21. Change Figure 31.16 to provide two-way authentication (Alice for Bob and Bob
for Alice).

22. Change Figure 31.17 to provide two-way authentication (Alice for Bob and Bob
for Alice).

23. Change Figure 31.18 to provide two-way authentication (Alice for Bob and Bob
for Alice).

24. In a university, a student needs to encrypt her password (with a unique symmetric
key) before sending it when she logs in. Does encryption protect the university or
the student? Explain your answer.

25. In Exercise 24, does it help if the student appends a timestamp to the password before
encryption? Explain your answer.

26. In Exercise 24, does it help if a student has a list of passwords and uses a different
one each time?

27. In Figure 31.20, what happens if KDC is down?

28. In Figure 31.21, what happens if the AS is down? What happens if the TGS is down?
What happens if the main server is down?

29. In Figure 31.26, what happens if the trusted center is down?

994 CHAPTER 31 NETWORK SECURITY

30. Add a symmetric-key encryption/decryption layer to Figure 31.11 to provide privacy.

31. Add an asymmetric-key encryption/decryption layer to Figure 31.11 to provide privacy.

Research Activities

32. There is a hashing algorithm called MD5. Find the difference between this algorithm
and SHA-l.

33. There is a hashing algorithm called RIPEMD-160. Find the difference between
this algorithm and SHA-l.

34. Compare MD5. SHA-1, and RIPEMD-160.

35. Find some infonnation about RSA digital signature.

36. Find some information about DSS digital signature.

