
CHAPTER 28

Network Management: SNMP

We can define network management as monitoring, testing, configuring, and trouble­
shooting network components to meet a set of requirements defined by an organiza­
tion. These requirements include the smooth, efficient operation of the network that
provides the predefined quality of service for users. To accomplish this task, a network
management system uses hardware, software, and humans. In this chapter, first we
briefly discuss the functions of a network management system. Then we concentrate
on the most common management system, the Simple Network Management Protocol
(SNMP).

28.1 NETWORK MANAGEMENT SYSTEM
We can say that the functions performed by a network management system can be
divided into five broad categories: configuration management, fault management, per­
formance management, security management, and accounting management, as shown
in Figure 28.1.

Figure 28.1 Functions ofa network management system

Response time

Functions of a network
management system

I
I I I I I

Configuration Fault Performance Security Accounting
management management management management management

~Reconfiguration ~Reactive -Capacity

'--Documentation '--Proactive f--Traffic

~Throughput

'--,

873

874 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Configuration Management

A large network is usually made up of hundreds of entities that are physically or logically
connected to one another. These entities have an initial configuration when the network
is set up, but can change with time. Desktop computers may be replaced by others;
application software may be updated to a newer version; and users may move from one
group to another. The configuration management system must know, at any time, the
status of each entity and its relation to other entities. Configuration management can
be divided into two subsystems: reconfiguration and documentation.

Reconfiguration

Reconfiguration, which means adjusting the network components and features, can be a
daily occurrence in a large network. There are three types of reconfiguration: hardware
reconfiguration, software reconfiguration, and user-account reconfiguration.

Hardware reconfiguration covers all changes to the hardware. For example, a desk­
top computer may need to be replaced. A router may need to be moved to another part
of the network. A subnetwork may be added or removed from the network. All these
need the time and attention of network management. In a large network, there must be
specialized personnel trained for quick and efficient hardware reconfiguration. Unfortu­
nately, this type of reconfiguration cannot be automated and must be manually handled
case by case.

Software reconfiguration covers all changes to the software. For example, new
software may need to be installed on servers or clients. An operating system may need
updating. Fortunately, most software reconfiguration can be automated. For example,
updating an application on some or all clients can be electronically downloaded from
the server.

User-account reconfiguration is not simply adding or deleting users on a system.
You must also consider the user privileges, both as an individual and as a member of a
group. For example, a user may have read and write permission with regard to some
files, but only read permission with regard to other files. User-account reconfiguration
can be, to some extent, automated. For example, in a college or university, at the begin­
ning of each quarter or semester, new students are added to the system. The students are
normally grouped according to the courses they take or the majors they pursue.

Documentation

The original network configuration and each subsequent change must be recorded
meticulously. This means that there must be documentation for hardware, software, and
user accounts.

Hardware documentation normally involves two sets of documents: maps and
specifications. Maps track each piece of hardware and its connection to the network.
There can be one general map that shows the logical relationship between each subnet­
work. There can also be a second general map that shows the physical location of each
subnetwork. For each subnetwork, then, there is one or more maps that show all pieces
of equipment. The maps use some kind of standardization to be easily read and under­
stood by current and future personnel. Maps are not enough per se. Each piece of hard­
ware also needs to be documented. There must be a set of specifications for each piece

SECTION 28.1 NETWORK MANAGEMENT SYSTEM 875

of hardware connected to the network. These specifications must include information
such as hardware type, serial number, vendor (address and phone number), time of
purchase, and warranty information.

All software must also be documented. Software documentation includes informa­
tion such as the software type, the version, the time installed, and the license agreement.

Most operating systems have a utility that allows the documentation of user accounts
and their privileges. The management must make sure that the files with this information
are updated and secured. Some operating systems record access privileges in two docu­
ments; one shows all files and access types for each user; the other shows the list of users
that have a particular access to a file.

Fault Management

Complex networks today are made up of hundreds and sometimes thousands of compo­
nents. Proper operation of the network depends on the proper operation of each component
individually and in relation to each other. Fault management is the area of network
management that handles this issue.

An effective fault management system has two subsystems: reactive fault manage­
ment and proactive fault management.

Reactive Fault Management

A reactive fault management system is responsible for detecting, isolating, correcting,
and recording faults. It handles short-term solutions to faults.

The first step taken by a reactive fault management system is to detect the exact
location of the fault. A fault is defined as an abnormal condition in the system. When a
fault occurs, either the system stops working properly or the system creates excessive
errors. A good example of a fault is a damaged communication medium. This fault may
interrupt communication or produce excessive errors.

The next step taken by a reactive fault management system is to isolate the fault. A
fault, if isolated, usually affects only a few users. After isolation, the affected users are
immediately notified and given an estimated time of correction.

The third step is to correct the fault. This may involve replacing or repairing the
faulty component(s).

After the fault is corrected, it must be documented. The record should show the
exact location of the fault, the possible cause, the action or actions taken to correct the
fault, the cost, and time it took for each step. Documentation is extremely important for
several reasons:

o The problem may recur. Documentation can help the present or future administrator
or technician solve a similar problem.

o The frequency of the same kind of failure is an indication of a major problem in
the system. If a fault happens frequently in one component, it should be replaced
with a similar one, or the whole system should be changed to avoid the use of that
type of component.

o The statistic is helpful to another part of network management, performance
management.

876 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Proactive Fault Management

Proactive fault management tries to prevent faults from occurring. Although this is not
always possible, some types of failures can be predicted and prevented. For example, if
a manufacturer specifies a lifetime for a component or a part of a component, it is a
good strategy to replace it before that time. As another example, if a fault happens
frequently at one particular point of a network, it is wise to carefully reconfigure the
network to prevent the fault from happening again.

Performance Management
Performance management, which is closely related to fault management, tries to
monitor and control the network to ensure that it is running as efficiently as possible.
Performance management tries to quantify performance by using some measurable
quantity such as capacity, traffic, throughput, or response time.

Capacity

One factor that must be monitored by a performance management system is the capacity
of the network. Every network has a limited capacity, and the performance management
system must ensure that it is not used above this capacity. For example, if a LAN is
designed for 100 stations at an average data rate of2 Mbps, it will not operate properly if
200 stations are connected to the network. The data rate will decrease and blocking
may occur.

Traffic

Traffic can be measured in two ways: internally and externally. Internal traffic is mea­
sured by the number of packets (or bytes) traveling inside the network. External traffic
is measured by the exchange of packets (or bytes) outside the network. During peak
hours, when the system is heavily used, blocking may occur if there is excessive traffic.

Throughput

We can measure the throughput of an individual device (such as a router) or a part of
the network. Performance management monitors the throughput to make sure that it is
not reduced to unacceptable levels.

Response Time

Response time is normally measured from the time a user requests a service to the time
the service is granted. Other factors such as capacity and traffic can affect the response
time. Performance management monitors the average response time and the peak-hour
response time. Any increase in response time is a very serious condition as it is an indi­
cation that the network is working above its capacity.

Security Management

Security management is responsible for controlling access to the network based on
the predefined policy. We discuss security and in particular network security in Chap­
ters 31 and 32.

SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 877

Accounting Management

Accounting management is the control of users' access to network resources through
charges. Under accounting management, individual users, departments, divisions, or
even projects are charged for the services they receive from the network. Charging does
not necessarily mean cash transfer; it may mean debiting the departments or divisions
for budgeting purposes. Today, organizations use an accounting management system
for the following reasons:

o It prevents users from monopolizing limited network resources.

o It prevents users from using the system inefficiently.

o Network managers can do short- and long-term planning based on the demand for
network use.

28.2 SIMPLE NETWORK MANAGEMENT
PROTOCOL (SNMP)

The Simple Network Management Protocol (SNMP) is a framework for managing
devices in an internet using the TCPIIP protocol suite. It provides a set of fundamental
operations for monitoring and maintaining an internet.

Concept

SNMP uses the concept of manager and agent. That is, a manager, usually a host,
controls and monitors a set of agents, usually routers (see Figure 28.2).

Figure 28.2 SNMP concept

Agent variables

Agent

Internet 1------.-'1;' :' :1---,....,--Manager

SNMP is an application-level protocol in which a few manager stations control a
set of agents. The protocol is designed at the application level so that it can monitor
devices made by different manufacturers and installed on different physical networks.
In other words, SNMP frees management tasks from both the physical characteristics
of the managed devices and the underlying networking technology. It can be used in a
heterogeneous internet made of different LANs and WANs connected by routers made
by different manufacturers.

878 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Managers and Agents

A management station, called a manager, is a host that runs the SNMP client program. A
managed station, called an agent, is a router (or a host) that runs the SNMP server program.
Management is achieved through simple interaction between a manager and an agent.

The agent keeps performance information in a database. The manager has access
to the values in the database. For example, a router can store in appropriate variables
the number of packets received and forwarded. The manager can fetch and compare the
values of these two variables to see if the router is congested or not.

The manager can also make the router perform certain actions. For example, a
router periodically checks the value of a reboot counter to see when it should reboot
itself. It reboots itself, for example, if the value of the counter is O. The manager can
use this feature to reboot the agent remotely at any time. It simply sends a packet to
force a 0 value in the counter.

Agents can also contribute to the management process. The server program running
on the agent can check the environment, and if it notices something unusual, it can send
a warning message, called a trap, to the manager.

In other words, management with SNMP is based on three basic ideas:

1. A manager checks an agent by requesting information that reflects the behavior of
the agent.

2. A manager forces an agent to perform a task by resetting values in the agent database.

3. An agent contributes to the management process by warning the manager of an
unusual situation.

Management Components

To do management tasks, SNMP uses two other protocols: Structure of Management
Information (SMI) and Management Information Base (MIB). In other words, man­
agement on the Internet is done through the cooperation of the three protocols SNMP,
SMI, and MIB, as shown in Figure 28.3.

Figure 28.3 Components ofnetwork management on the Internet

Management

I SNMP

8MI I MIB I

Let us elaborate on the interactions between these protocols.

RoleofSNMP

SNMP has some very specific roles in network management. It defines the format of
the packet to be sent from a manager to an agent and vice versa. It also interprets the

SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 879

result and creates statistics (often with the help of other management software). The
packets exchanged contain the object (variable) names and their status (values). SNMP
is responsible for reading and changing these values.

SNMP defines the format of packets exchanged between a manager and an agent.
It reads and changes the status (values) of objects (variables) in 8NMP packets.

Role ofSMI

To use SNMP, we need rules. We need rules for naming objects. This is particularly
important because the objects in SNMP form a hierarchical structure (an object may
have a parent object and some children objects). Part of a name can be inherited from
the parent. We also need rules to define the type of the objects. What types of objects
are handled by SNMP? Can SNMP handle simple types or structured types? How many
simple types are available? What are the sizes of these types? What is the range of these
types? In addition, how are each of these types encoded?

We need these universal rules because we do not know the architecture of the com­
puters that send, receive, or store these values. The sender may be a powerful computer
in which an integer is stored as 8-byte data; the receiver may be a small computer that
stores an integer as 4-byte data.

SMI is a protocol that defines these rules. However, we must understand that SMI
only defines the rules; it does not define how many objects are managed in an entity or
which object uses which type. SMI is a collection of general rules to name objects and
to list their types. The association of an object with the type is not done by SMI.

8MI defines the general rules for naming objects, defining object types (including
range and length), and showing how to encode objects and values.

8M1 does not define the number of objects an entity should manage or name the objects
to be managed or define the association between the objects and their values.

Role ofMIB

We hope it is clear that we need another protocol. For each entity to be managed, this
protocol must define the number of objects, name them according to the rules defined
by SMI, and associate a type to each named object. This protocol is MIB. MIB creates
a set of objects defined for each entity similar to a database (mostly metadata in a data­
base, names and types without values).

:MIB creates a collection of named objects, their types, and their relationships to
each other in an entity to be managed.

An Analogy

Before discussing each of these protocols in greater detail, we give an analogy. The
three network management components are similar to what we need when we write a
program in a computer language to solve a problem.

880 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Before we write a program, the syntax of the language (such as C or Java) must be
predefined. The language also defines the structure of variables (simple, structured,
pointer, and so on) and how the variables must be named. For example, a variable name
must be 1 to N characters in length and start with a letter followed by alphanumeric
characters. The language also defines the type of data to be used (integer, float, char,
etc.). In programming the rules are defined by the language. In network management
the rules are defined by SMI.

Most computer languages require that variables be declared in each specific pro­
gram. The declaration names each variable and defines the predefined type. For example,
if a program has two variables (an integer named counter and an array named grades of
type char), they must be declared at the beginning of the program:

int counter;
char grades [40];

Note that the declarations name the variables (counter and grades) and define the
type of each variable. Because the types are predefined in the language, the program
knows the range and size of each variable.

MIB does this task in network management. MIB names each object and defines ~e
type of the objects. Because the type is defined by SMI, SNMP knows the range and size.

After declaration in programming, the program needs to write statements to store
values in the variables and change them if needed. SNMP does this task in network
management. SNMP stores, changes, and interprets the values of objects already
declared by MIB according to the rules defined by SMI.

We can compare the task of network management to the task of writing a program.

o Both tasks need rules. In network management this is handled by SMI.

o Both tasks need variable declarations. In network management this is handled by MIB.

o Both tasks have actions performed by statements. In network management this is
handled by SNMP.

An Overview

Before discussing each component in detail, we show how each is involved in a simple
scenario. This is an overview that will be developed later at the end of the chapter. A
manager station (SNMP client) wants to send a message to an agent station (SNMP
server) to find the number of UDP user datagrams received by the agent. Figure 28.4
shows an overview of steps involved.

MIB is responsible for finding the object that holds the number of the UDP user
datagrams received. SMI, with the help of another embedded protocol, is responsible for
encoding the name of the object. SNMP is responsible for creating a message, called a
GetRequest message, and encapsulating the encoded message. Of course, things are
more complicated than this simple overview, but we first need more details of each
protocol.

SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 881

Figure 28.4 Management overview

Number of UDP user datagrams?

--------------~
The object has an integer value and

is called udpInDatagram with id
1.3.6.1.2.1.7.1.0

--------------~
Retrieve the value of an object

with code 06 09 .

--------------jSNMPI
Encapsulate the request in a

GetRequest message

Structure of Management Information

The Structure of Management Information, version 2 (SMIv2) is a component for net­
work management. Its functions are

1. To name objects

2. To define the type of data that can be stored in an object

3. To show how to encode data for transmission over the network

SMI is a guideline for SNMP. It emphasizes three attributes to handle an object: name,
data type, and encoding method (see Figure 28.5).

Figure 28.5 Object attributes

Object attributes

Type

Name

SMI requires that each managed object (such as a router, a variable in a router, a value)
have a unique name. To name objects globally, SMI uses an object identifier, which is
a hierarchical identifier based on a tree structure (see Figure 28.6).

882 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.6 Object identifier

1.3.6.1 (iso.org.dop.intemet)

1.3.6.1.2.1 (iso.org.dod.internet.mgmt.mib-2)

The tree structure starts with an unnamed root. Each object can be defined by using
a sequence of integers separated by dots. The tree structure can also define an object by
using a sequence of textual names separated by dots. The integer-dot representation is
used in SNMP. The name-dot notation is used by people. For example, the following
shows the same object in two different notations:

iso.org.dod.internet.mgmt.mib-2 ... 1.3.6.1.2.1

The objects that are used in SNMP are located under the mib-2 object, so their
identifiers always start with 1.3.6.1.2.1.

AU objects managed by SNMP are given an object identifier.
The object identifier always starts with 1.3.6.1.2.1.

Type

The second attribute of an object is the type of data stored in it. To define the data type,
SMI uses fundamental Abstract Syntax Notation 1 (ASN.l) definitions and adds
some new definitions. In other words, SMI is both a subset and a superset of ASN.1.

SMI has two broad categories of data type: simple and structured. We first define
the simple types and then show how the structured types can be constructed from the
simple ones (see Figure 28.7).

SECTION 28.2 SIMPLE NEIWORK MANAGEMENT PROTOCOL (SNMP) 883

Figure 28.7 Data type

Simple Type The simple data types are atomic data types. Some of them are taken
directly from ASN.l; others are added by SMI. The most important ones are given in
Table 28.1. The first five are from ASN.l; the next seven are defined by SMI.

Table 28.1 Data types

Type Size Description

INTEGER 4 bytes An integer with a value between _231 and 231 - 1

Integer32 4 bytes Same as INTEGER

Unsigned32 4 bytes Unsigned with a value between 0 and 232 - 1

OCTET STRING Variable Byte string up to 65,535 bytes long

OBJECT IDENTIFIER Variable An object identifier

IPAddress 4 bytes An IP address made of four integers

Counter32 4 bytes An integer whose value can be incremented
from 0 to 232; when it reaches its maximum
value, it wraps back to O.

Counter64 8 bytes 64-bit counter

Gauge32 4 bytes Same as Counter32, but when it reaches its
maximum value, it does not wrap; it remains
there until it is reset

TimeTicks 4 bytes A counting value that records time in l~ s

BITS A string of bits

Opaque Variable Uninterpreted string

Structured Type By combining simple and structured data types, we can make new
structured data types. SMI defines two structured data types: sequence and sequence of

o Sequence. A sequence data type is a combination of simple data types, not neces­
sarily of the same type. It is analogous to the concept of a struct or a record used in
programming languages such as C.

o Sequence of. A sequence ofdata type is a combination of simple data types all of
the same type or a combination of sequence data types all of the same type. It is
analogous to the concept of an array used in programming languages such as C.

884 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.8 shows a conceptual view of data types.

Figure 28.8 Conceptual data types

-a. Simple variable

b. Sequence of
(simple variables)

c. Sequence

d. Sequence of
(sequences)

...

...

Encoding Method

SMI uses another standard, Basic Encoding Rules (BER), to encode data to be trans­
mitted over the network. BER specifies that each piece of data be encoded in triplet
format: tag, length, and value, as illustrated in Figure 28.9.

Figure 28.9 Encoding format

o Tag. The tag is a I-byte field that defines the type of data. It is composed of three
subfields: class (2 bits),fonnat (1 bit), and number (5 bits). The class subfield defines
the scope of the data. Four classes are defined: universal (00), applicationwide (01),
context-specific (10), and private (11). The universal data types are those taken from
ASN.l (INTEGER, OCTET STRING, and ObjectIdentifier). The applicationwide
data types are those added by SMI (IPAddress, Counter, Gauge, and TimeTicks). The
five context-specific data types have meanings that may change from one protocol to
another. The private data types are vendor-specific.

The format subfield indicates whether the data are simple (0) or structured (1).
The number subfield further divides simple or structured data into subgroups. For
example, in the universal class, with simple format, INTEGER has a value of 2,
OCTET STRING has a value of 4, and so on. Table 28.2 shows the data types we
use in this chapter and their tags in binary and hexadecimal numbers.

SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 885

Table 28.2 Codes for data types

Data Type Class Format Number Tag (Binary) Tag (Hex)

INTEGER 00 0 00010 00000010 02

OCTET STRING 00 0 00100 00000100 04

OBJECT IDENTIFIER 00 0 00110 00000110 06

NULL 00 0 00101 00000101 05

Sequence, sequence of 00 1 10000 00110000 30

IPAddress 01 0 00000 01000000 40

Counter 01 0 00001 01000001 41

Gauge 01 0 00010 01000010 42

TimeTicks 01 0 00011 01000011 43

Opaque 01 0 00100 01000100 44

o Length. The length field is I or more bytes. If it is 1 byte, the most significant bit
must be O. The other 7 bits define the length of the data. If it is more than 1 byte,
the most significant bit of the first byte must be 1. The other 7 bits of the first byte
define the number of bytes needed to define the length. See Figure 28.10 for a
depiction of the length field.

Figure 28.10 Length format

~
a. The colored part defines the length (2).

~~~
b. The shaded part dermes the length of the length (2 bytes);

the colored bytes define the length (260 bytes).

o Value. The value field codes the value of the data according to the rules defined
in BER.

To show how these three fields-tag, length, and value-can define objects, we give
some examples.

Example 28.1

Figure 28.11 shows how to define INTEGER 14.

Example 28.2

Figure 28.12 shows how to define the OCTET STRING "HI."



886 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.11 Example 28.1, INTEGER 14

Value (14)

02

Tag
(integer)

04
, ';

1.li.lOOO100

Length
(4 bytes)

00

00000000

00

00000000

00

00000000

OE
00001110

Figure 28.12 Example 28.2, OCTET STRING "HI"

04 02 48 49

00000010 ~~' . 01001000 01001001

Tag Length Value Value
(String) (2 bytes) (H) (1)

Example 28.3

Figure 28.13 shows how to define ObjectIdentifier 1.3.6.1 (iso.org.dod.internet).

Figure 28.13 Example 28.3, ObjectIdentifier 1.3.6.1

06 04

~(~ ..~~~OOOQQIQ(J~·J
Tag Length

(ObjectId) (4 bytes)

I-

01

00000001

Value
(1)

03 06 01

00000011 00000110 00000001

Value Value Value
(3) (6) 0)

1.3.6.1 (iso.org.dod.intemet) 'I

Example 28.4

Figure 28.14 shows how to define IPAddress 131.21.14.8.

Figure 28.14 Example 28.4, IPAddress 131.21.14.8

04 83 15 OE 08

000oo100 10000011 00010101 00001110 00001000

Tag Length Value Value Value Value
(IPAddress) (4 bytes) (131) (21) (14) (8)

I- 131.21.14.8 >I

Management Information Base (MIB)

The Management Information Base, version 2 (MIB2) is the second component used in
network management. Each agent has its own MIB2, which is a collection of all the
objects that the manager can manage. The objects in MIB2 are categorized under 10



SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 887

different groups: system, interface, address translation, ip, icmp, tcp, udp, egp, trans­
mission, and snmp. These groups are under the mib-2 object in the object identifier tree
(see Figure 28.15). Each group has defined variables and/or tables.

Figure 28.15 mib-2

1.3.6.1.2.1

The following is a brief description of some of the objects:

D sys This object (system) defines general information about the node (system),
such as the name, location, and lifetime.

D if This object (inteiface) defines information about all the interfaces of the node
including interface number, physical address, and IP address.

D at This object (address translation) defines the information about the ARP table.

D ip This object defines information related to IP, such as the routing table and the
IP address.

D icmp This object defines information related to ICMP, such as the number of
packets sent and received and total errors created.

D tcp This object defines general information related to TCP, such as the connection
table, time-out value, number of ports, and number of packets sent and received.

D udp This object defines general information related to UDP, such as the number
of ports and number of packets sent and received.

D snmp This object defines general information related to SNMP itself.

Accessing MIB Variables

To show how to access different variables, we use the udp group as an example. There
are four simple variables in the udp group and one sequence of (table of) records.
Figure 28.16 shows the variables and the table.

We will show how to access each entity.

Simple Variables To access any of the simple variables, we use the id of the group
(1.3.6.1.2.1.7) followed by the id of the variable. The following shows how to access
each variable.

udpInDatagrams
. udpNoPorts

udplnErrors
udpOutDatagrams

1.3,6.1.2.1.7.1
1.3.6.1.2.1.7.2
1.3.6.1.2.1.7.3
1.3.6.1.2.1.7.4



888 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.16 udp group

udpLocal
Address

udpLocal
Port

However, these object identifiers define the variable, not the instance (contents). To show
the instance or the contents of each variable, we must add an instance suffix. The instance
suffix for a simple variable is simply a O. In other words, to show an instance of the above
variables, we use the following:

udpInDatagrams.O 1.3.6.1.2.1.7.1.0
udpNoPorts.O 1.3.6.1.2.1.7.2.0
udpInErrors.O 1.3.6.1.2.1.7.3.0
udpOutDa.tagrams.O 1.3.6.1.2.1.7.4.0

Tables To identify a table, we first use the table id. The udp group has only one table
(with id 5) as illustrated in Figure 28.17.

So to access the table, we use the following:

udpTable ... 1.3.6.1.2.1.7.5

However, the table is not at the leaf level in the tree structure. We cannot access the
table; we define the entry (sequence) in the table (with id of 1), as follows:

udpEntry ... 1.3.6.1.2.1.7.5.1

This entry is also not a leaf and we cannot access it. We need to define each entity
(field) in the entry.

udpLocalAddress 1.3.6.1.2.1.7.5.1.1
udpLocalPoo' 1.3.6.1.2.1.7.5.1.2

These two variables are at the leaf of the tree. Although we can access their instances,
we need to define which instance. At any moment, the table can have several values for



SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 889

Figure 28.17 udp variables and tables

udpInDatagrams
(1.3.6.1.2.1.7.1)

'--- I
udpLocaIAddress

(1.3.6.1.2.1.7.5.1.1)

---_I
udpLocaIPort

(1.3.6.1.2.1.7.5.1.2)

udpEntry
(1.3.6.1.2.1.7.5.1)

udpNoPorts
(1.3.6.1.2.1.7.2)

_------I
udpLocaIAddress

(1.3.6.1.2.1.7.5.1.1)

~~I
udpLocaIPort

(1.3.6.1.2.1.7.5.1.2)

udpEntry
(1.3.6.1.2.1.7.5.1)

udpEnn-y
(1.3.6.1.2.1.7.5.1)

udplnErrors
(1.3.6.1.2.1.7.3)

~------I
udpOutDatagrams
(1.3.6.1.2.1.7.4)

_------I
udpLocalAddress

(1.3.6.1.2.1.7.5.1.1)

···
-------,

udpLocalPon
(1.3.6.1.2.1.7.5.1.2)

udpTable
(1.3.6.1.2.1.7.5)

each local address/local port pair. To access a specific instance (row) of the table, we
add the index to the above ids. In MIB, the indexes of arrays are not integers (like most
programming languages). The indexes are based on the value of one or more fields in
the entries. In our example, the udpTable is indexed based on both the local address and
the local port number. For example, Figure 28.18 shows a table with four rows and values
for each field. The index of each row is a combination of two values.

To access the instance of the local address for the first row, we use the identifier
augmented with the instance index:

udpLocalAddress.181.23.45.14.23 ...... 1.3.6.1.2.7.5.1.1.181.23.45.14.23

Note that not all tables are indexed in the same way. Some tables are indexed by using
the value of one field, others by using the value of two fields, and so on.

Lexicographic Ordering
One interesting point about the MIB variables is that the object identifiers (including
the instance identifiers) follow in lexicographic order. Tables are ordered according to
column-row rules, which means one should go column by column. In each column, one
should go from the top to the bottom, as shown in Figure 28.19.



890 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.18 Indexes for udpTable

181.23.45.14 I
1.3.6.1.2.1.7.5.1.1.181.23.45.14.23

192.13.5.10

1.3.6.1.2.1.7.5.1.1.192.13.5.10.161

227.2.45.18

1.3.6.1.2.1.7.5.1.1.227.2.45.18.180

230.20.5.24 I
1.3.6.1.2.1.7.5.1.1.230.20.5.24.212

Figure 28.19 Lexicographic ordering

23 I
1.3.6.1.2.1.7.5.1.2.181.23.45.14.23

o
1.3.6.1.2.1.7.5.1.2.192.13.5.10.161

180 I
1.3.6.1.2.1.7.5.1.2.227.2.45.18.180

212 I
1.3.6.1.2.1.7.5.1.2.230.20.5.24.212

I ~
I

I 181.23.45.14 I ) 23 I
I

1.3.6.1.2.1.7.5.1. .181.23.45.14.23 1.3.6.1.2!1.7.5.1. .181.23.45.14.23
I

I
I

I

I I
I

I I192.13.5.10 I 161I
I

1.3.6.1.2.1.7.5.1. .192.13.5.10.161 / 1.3.6.1.2.1.7.5.1. .192.13.5.10.161
I

I
I

I

I I
I

I I227.2.45.18 I 180
I

I
I

1.3.6.1.2.1.7.5.1.1.3.6.1.2.1.7.5.1. .227.2.45.18.1&0 .227.2.45.18.180
I

I
I

I

I 230.20.5.24 I I 212 I
I

1.3.6.1.2.1.7.5.1.1.3.6.1.2.1.7.5.1. .23tl.20.5.24.212 .230.20.5.24.212
I

I



SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 891

The lexicographic ordering enables a manager to access a set of variables one after
another by defining the first variable, as we will see in the GetNextRequest command in
the next section.

SNMP
SNMP uses both SMI and MIB in Internet network management. It is an application
program that allows

1. A manager to retrieve the value of an object defined in an agent

2. A manager to store a value in an object defined in an agent

3. An agent to send an alarm message about an abnormal situation to the manager

PDUs

SNMPv3 defines eight types of packets (or PDUs): GetRequest, GetNextRequest, Get­
BulkRequest, SetRequest, Response, Trap, InformRequest, and Report (see Figure 28.20).

Figure 28.20 SNMP PDUs

UDP
connections

Trap

SNMP
manager

Client

<r--~-....R_e-,""-spo-....n-,,se,,---,~_:~~',,,---',_''-I',I

~

SNMP
agent

Server

-;~ :~~~~epa~f~7 To another manager'---_......

GetRequest The GetRequest PDU is sent from the manager (client) to the agent
(server) to retrieve the value of a variable or a set of variables.

GetNextRequest The GetNextRequest PDU is sent from the manager to the agent to
retrieve the value of a variable. The retrieved value is the value of the object following the
defined Objectid in the PDD. It is mostly used to retrieve the values ofthe entries in a table.
If the manager does not know the indexes of the entries, it cannot retrieve the values. How­
ever, it can use GetNextRequest and define the ObjectId of the table. Because the first entry
has the ObjectId immediately after the ObjectId of the table, the value of the first entry is
returned. The manager can use this ObjectId to get the value of the next one, and so on.



892 CHAPTER 28 NETWORK MANAGEMENT: SNMP

GetBulkRequest The GetBulkRequest POD is sent from the manager to the agent
to retrieve a large amount of data. It can be used instead of multiple GetRequest and
GetNextRequest PODs.

SetRequest The SetRequest PDD is sent from the manager to the agent to set (store)
a value in a variable.

Response The Response PDD is sent from an agent to a manager in response to
GetRequest or GetNextRequest. It contains the value(s) of the variable(s) requested by
the manager.

Trap The Trap (also called SNMPv2 Trap to distinguish it from SNMPv1 Trap)
POD is sent from the agent to the manager to report an event. For example, if the agent
is rebooted, it infonns the manager and reports the time of rebooting.

InformRequest The InfonnRequest POD is sent from one manager to another remote
manager to get the value of some variables from agents under the control of the remote
manager. The remote manager responds with a Response POD.

Report The Report POD is designed to report some types of errors between managers.
It is not yet in use.

Format

The fonnat for the eight SNMP PODs is shown in Figure 28.21. The GetBulkRequest
POD differs from the others in two areas, as shown in the figure.

Figure 28.21 SNMP PDUformat

PDU

VarBind list :I

I'l~-~ I Value I··· IVaria.ble: 11 Value 1

Differences:

1. Error status and error index values are zeros for all request
messages except GetBulkRequest.

2. Error status field is replaced by nonrepeater field and error index
field is replaced by max-repetitions field in GetBulkRequest.

The fields are listed below:

o PDU type. This field defines the type of the POD (see Table 28.4).

o Request ID. This field is a sequence number used by the manager in a Request POD
and repeated by the agent in a response. It is used to match a request to a response.



SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 893

o Error status. This is an integer that is used only in Response PDUs to show the
types of errors reported by the agent. Its value is 0 in Request PDUs. Table 28.3
lists the types of errors that can occur.

Table 28.3 Types oferrors

Status Name Meaning

0 noError No error

1 tooBig Response too big to fit in one message

2 noSuchName Variable does not exist

3 badValue The value to be stored is invalid

4 readOnly The value cannot be modified

5 genErr Other errors

o Nonrepeaters. This field IS used only in GetBulkRequest and replaces the error
status field, which is empty in Request PDUs.

o Error index. The error index is an offset that tells the manager which variable
caused the errOr.

o Max~repetition. This field is also used only in GetBulkRequest and replaces the
error index field, which is empty in Request PDUs.

o VarBind list. This is a set of variables with the corresponding values the manager
wants to retrieve or set. The values are null in GetRequest and GetNextRequest. In
a Trap PDU, it shows the variables and values related to a specific PDU.

Messages

SNMP does not send only a PDU, it embeds the PDU in a message. A message in
SNMPv3 is made of four elements: version, header, security parameters, and data
(which include the encoded PDU), as shown in Figure 28.22.

Because the length of these elements is different from message to message, SNMP
uses BER to encode each element. Remember that BER uses the tag and the length to
define a value. The version defines the current version (3). The header contains values for
message identification, maximum message size (the maximum size of the reply), mes­
sage flag (one octet of data type OCTET STRING where each bit defines security type,
such as privacy or authentication, Or other information), and a message security model
(defining the security protocol). The message security parameter is used to create a mes­
sage digest (see Chapter 31). The data contain the PDU. If the data are encrypted, there is
information about the encrypting engine (the manager program that did the encryption)
and the encrypting context (the type of encryption) followed by the encrypted PDU. If the
data are not encrypted, the data consist of just the PDU.

To define the type ofPDU, SNMP uses a tag. The class is context-sensitive (10), the
format is structured (1), and the numbers are 0, 1,2, 3, 5, 6, 7, and 8 (see Table 28.4).
Note that SNMPvl defined A4 for Trap, which is obsolete today.



894 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.22 SNMP message

Message

Version

Header

Security parameter

Data

Context engine ID

Context name

PDU

Table 28.4 Codes for SNMP messages

, Whole Tag Whole Tag
Data Class Format Number (Binary) (Hex)

GetRequest 10 1 00000 10100000 AO

GetNextRequest 10 1 00001 10100001 Al

Response 10 1 00010 10100010 A2

SetRequest 10 1 00011 10100011 A3

GetBulkRequest 10 1 00101 10100101 AS

InformRequest 10 1 00110 10100110 A6

Trap (SNMPv2) 10 1 00111 10100111 A7

Report 10 1 01000 10101000 A8

Example 28,5

In this example, a manager station (SNMP client) uses the GetRequest message to retrieve the
number of UDP datagrams that a router has received.

There is only one VarBind entity. The corresponding MID variable related to this informa­
tion is udpInDatagrams with the object identifier 1.3.6.1.2.1.7.1.0. The manager wants to retrieve
a value (not to store a value), so the value defines a null entity. Figure 28.23 shows the conceptual



SECTION 28.2 SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) 895

Figure 28.23 Example 28.5

3034

020103 INTEGER, version

300C

1-- ... - IHeader, sequence
of length 12, not shown

020140 ] Two
02 02 04 00 INTEGERs

040100J0400 Three
04 00 OCTET STRINGs

30 IF

AO 10

02 04 00 01 06 Il Thr
020100 ee
02 01 00 INTEGERs Data, a

30 OF
GetRequest sequence
PDUof of31

30 on length 29 bytesVarBindII 0609 010306 010201070100 Iv: Bind list0500 ar

Whole message
a sequence of
52 bytes

view of the packet and the hierarchical nature of sequences. We have used white and colored boxes
for the sequences and a gray one for the PDU.

The VarBind list has only one VarBind. The variable is of type 06 and length 09. The value is
of type 05 and length 00. The whole VarBind is a sequence of length OD (13). The VarBind list is
also a sequence of length OF (15). The GetRequest PDU is of length ID (29).

Now we have three OCTET STRINGs related to the security parameter, security model, and
flags. Then we have two integers defining maximum size (1024) and message ID (64). The
header is a sequence of length 12, which we left blank for simplicity. There is one integer, version
(version 3). The whole message is a sequence of 52 bytes.

Figure 28.24 shows the actual message sent by the manager station (client) to the agent (server).

UDPPorts
SNMP uses the services of UDP on two well-known ports, 161 and 162. The well­
known port 161 is used by the server (agent), and the well-known port 162 is used by
the client (manager).

The agent (server) issues a passive open on port 161. It then waits for a connection
from a manager (client). A manager (client) issues an active open, using an ephemeral
port, The request messages are sent from the client to the server, using the ephemeral
port as the source port and the well-known port 161 as the destination port. The
response messages are sent from the server to the client, using the well-known port 161
as the source port and the ephemeral port as the destination port.

The manager (client) issues a passive open on port 162. It then waits for a connec­
tion from an agent (server). Whenever it has a Trap message to send, an agent (server)
issues an active open, using an ephemeral port. This connection is only one-way, from
the server to the client (see Figure 28.25).



896 CHAPTER 28 NETWORK MANAGEMENT: SNMP

Figure 28.24 GetRequest message

&
Packet me=!

cu::uJ
~

Manager ..-
Agent

30 34 02 01
03 30 OC

02
CLl 01 40 02 02bO
oj

04 00 04 01'"'"8 00 04 00 04
tl 00 30 IF AOCLl::;

10 02 04 000'

~ 01 06 11 02O:l
0 01 00 02 01

00 30 OF 30
00 06 09 01
03 06 01 02
01 07 01 00
05 00

Figure 28.25 Port numbers for SNMP

Client
Passive

open

Passive

OII(0pen.

I Server-_......
a. Passive open by both client and server

Active

=
8000:...,0II(f-°..;:.p_en --+j._

Client I Server

--- '---
b. Exchange of request and response messages

'__C_li_en_t_~f-ool(E---------A-O-~t1-~~-e~='__se_rv_e_r_
c. Server sends trap message



SECTION 28.4 KEY TERMS 897

The client/server mechanism in SNMP is different from other protocols. Here both
the client and the server use well-known ports. In addition, both the client and the
server are running infinitely. The reason is that request messages are initiated by a man­
ager (client), but Trap messages are initiated by an agent (server).

Security

The main difference between SNMPv3 and SNMPv2 is the enhanced security. SNMPv3
provides two types of security: general and specific. SNMPv3 provides message authenti­
cation, privacy, and manager authorization. We discuss these three aspects in Chapter 31. In
addition, SNMPv3 allows a manager to remotely change the security configuration, which
means that the manager does not have to be physically present at the manager station.

28.3 RECOMMENDED READING
For more details about subjects discussed in this chapter, we recommend the following
books and sites. The items in brackets [...] refer to the reference list at the end ofthe text.

Books

SNMP is discussed in [MS01], Chapter 25 of [Ste94], Section 22.3 of [Sta04], and
Chapter 39 of [Com04]. Network management is discussed in [Sub01].

Sites

The following sites are related to topics discussed in this chapter.

o www.ietf.org/rfc.html Information about RFCs

RFCs

The following RFCs are related to SNMP, MIB, and SMI:

1065, 1067,1098, 1155,1157, 1212, 1213, 1229, 1231, 1243, 1284, 1351, 1352,1354, 1389,
1398, 1414, 1441, 1442, 1443, 1444,1445, 1446, 1447, 1448, 1449, 1450, 1451, 1452, 1461,
1472, 1474, 1537, 1623,1643,1650, 1657, 1665, 1666, 1696, 1697, 1724, 1742,1743, 1748,
1749

28.4 KEY TERMS
Abstract Syntax Notation 1 (ASN.l)

accounting management

agent

Basic Encoding Rules (BER)

configuration management

fault management

hardware documentation

lexicographic ordering

Management Information Base (MIB)

manager

network management

object identifier

performance management

security management



898 CHAPTER 28 NE1WORK MANAGEMENT: SNMP

simple data type

Simple Network Management Protocol
(SNMP)

structured data type

Structure of Management Information
(SMI)

trap

28.5 SUMMARY
o The five areas comprising network management are configuration management,

fault management, performance management, accounting management, and security
management.

o Configuration management is concerned with the physical or logical changes of
network entities. It includes the reconfiguration and documentation of hardware,
software, and user accounts.

o Fault management is concerned with the proper operation of each network compo­
nent. It can be reactive or proactive.

o Performance management is concerned with the monitoring and control of the
network to ensure the network runs as efficiently as possible. It is quantified by
measuring the capacity, traffic, throughput, and response time.

o Security management is concerned with controlling access to the network.

o Accounting management is concerned with the control of user access to network
resources through charges.

o Simple Network Management Protocol (SNMP) is a framework for managing
devices in an internet using the TCP/IP protocol suite.

o A manager, usually a host, controls and monitors a set of agents, usually routers.

o The manager is a host that runs the SNMP client program.

o The agent is a router or host that runs the SNMP server program.

o SNMP frees management tasks from both the physical characteristics of the managed
devices and the underlying networking technology.

o SNMP uses the services of two other protocols: Structure of Management Infor­
mation (SMI) and Management Information Base (MIB).

o SMI names objects, defines the type of data that can be stored in an object, and
encodes the data.

o SMI objects are named according to a hierarchical tree structure.

o SMI data types are defined according to Abstract Syntax Notation 1 (ASN.l).

o SMI uses Basic Encoding Rules (BER) to encode data.

o MIB is a collection of groups of objects that can be managed by SNMP.

o MIB uses lexicographic ordering to manage its variables.

o SNMP functions in three ways:

1. A manager can retrieve the value of an object defined in an agent.

2. A manager can store a value in an object defined in an agent.

3. An agent can send an alarm message to the manager.



SECTION 28.6 PRACTICE SET 899

o SNMP defines eight types of packets: GetRequest, GetNextRequest, SetRequest,
GetBulkRequest, Trap, InformRequest, Response, and Report.

o SNMP uses the services ofUDP on two well-known ports, 161 and 162.

o SNMPv3 has enhanced security features over previous versions.

28.6 PRACTICE SET

Review Questions

I. Define network management.

2. List five functions of network management.

.3. Define configuration management and its purpose.

4. List two subfunctions of configuration management.

S. Define fault management and its purpose.

6. List two subfunctions of fault management.

7. Define performance management and its purpose.

8. List four measurable quantities of performance management.

9. Define security management and its purpose.

10. Define account management and its purpose.

Exercises
II. Show the encoding for INTEGER 1456.

12. Show the encoding for the OCTET STRING "Hello World."

13. Show the encoding for an arbitrary OCTET STRING oflength 1000.

14. Show how the following record (sequence) is encoded.

INTEGER
2345

OCTET STRING
"COMPUTER"

IP Address
185.32.1.5

15. Show how the following record (sequence) is encoded.

Time Tick
12000

INTEGER
14564

Object Id
1.3.6.1.2.1.7

16. Show how the following array (sequence of) is encoded. Each element is an
integer.

2345
1236
122

1236



900 CHAPTER 28 NETWORK MANAGEMENT: SNMP

17. Show how the following array of records (sequence of sequence) is encoded.

INTEGER
2345
1123
3456

OCTET STRING
"COMPUTER"
"DISK"
"MONITOR"

Counter
345
1430
2313

18. Decode the following.

a. 02 04 01 02 14 32

b. 30060201 11 0201 14
c. 300904034143420202 14 14

d. 30 OA 40 04 2351 6271 0202 14 12


